X-ray and CT

Share:

EmailFacebookLinkedInXWhatsAppShare
This program supports the research and development of technologies and techniques that create multi-dimensional/spectral images of internal structures, contrast agents, or molecular probes using x-rays transmitted through the body (CT, mammography) or x-ray stimulation of secondary emissions (x-ray fluorescence tomography).

Emphasis

The emphasis is on: simulation, design and development of new x-ray sources and detector systems for imaging; new readout methods that enhance the signal quality for x-ray image generation; designs of novel imaging geometries for dedicated, general or multi-purpose imaging; algorithms that compensate for the physical properties of the detection system to improve the clinical reliability of the image (reconstruction algorithms); and approaches to radiation dose reduction, especially in CT. Of interest are diagnostic image enhancements via energy sensitive photon counting, dual/multi energy imaging and quantification, and new applications of cone-beam tomography.

Relevance

The emphasized topics are meant to lead toward: improved clinical CT and planar x-ray (e.g. mammography) systems or new camera geometries; new signal-processing and image-generation algorithms; corrections for image artifacts for enhanced reliability of clinical images; studies of x-ray physics to estimate absorbed energy of diagnostic scans; and methods of visualizing or measuring therapy doses. Investigating the associated dosimetry estimations helps to decrease the risk of diagnostic and therapy techniques.

Examples of emphasis

  • improvement in compact x-ray source technologies
  • development & construction of flat panel detector arrays
  • evaluation of new semiconductor, scintillation and other novel radiation detectors
  • reconstruction algorithms for CT and cone-beam geometry
  • advances of photon counting or dual/multi-energy in CT
  • techniques for improved image spatial resolution and sensitivity
  • investigating x-ray luminescence tomography
  • design and manufacture of x-ray gratings
  • investigating interferometry and (tissue-induced) phase contrast techniques as well as development of usable phase contrast systems
  • combining modalities for clinically relevant hybrid cameras (e.g. coupling x-ray CT to SPECT and PET, ultrasound, optical, MRI or other modalities)
  • software algorithms and imaging protocols to estimate patient dosimetry
  • improvements in digital radiography and digital fluoroscopy
  • novel interaction processing such as those using scattered x-rays
  • developing ion beams for novel clinical applications
  • new diagnostics applied to image-guided therapy and theranostics

Additional support

  • improvements in digital radiography and digital fluoroscopy
  • novel interaction processing such as those using scattered x-rays
  • developing ion beams for novel clinical applications
  • new diagnostics applied to image-guided therapy and theranostics

Notes

Notice of Special Interest in X-ray-based Devices for Trauma Care

 

    Related News

    July 1, 2024

    A team of researchers led by the University of California San Diego has developed a soft, stretchy electronic device capable of simulating the feeling of pressure or vibration when worn on the skin. The new technology could pave the way for the development of advanced devices in virtual reality, medical prosthetics and wearable technology. Source: University of California San Diego.

    June 25, 2024

    NIBIB-funded researchers are working to make bladder surgeries better, tackling the issue from two vantage points: improving bladder function using a biodegradable construct that facilitates tissue regeneration, and enhancing patient monitoring by developing an implantable bladder sensor.

    June 12, 2024

    To date, nine medical device developers participating in the RADx® Tech Independent Test Assessment Program have received emergency use authorization for at-home and point-of care test products that simultaneously detect COVID-19 and flu A/B.

    June 11, 2024

    Scientists at the University of North Carolina at Chapel Hill have created innovative soft robots equipped with electronic skins and artificial muscles, allowing them to sense their surroundings and adapt their movements in real-time. These features make soft sensory robots highly adaptable and useful for enhancing medical diagnostics and treatments.  Source: UNC Chapel Hill 

    May 22, 2024

    A team of scientists have developed a noninvasive alternative to current weight-loss options—an oral capsule containing a tiny vibrating motor that is designed to stimulate the stomach to produce the same sense of fullness people experience after eating a large meal.