Skip to main content

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

More by Karen Olsen

NIBIB-funded researchers are developing a robotic pill that, after swallowing, can deliver biologic drugs into the stomach, which could provide an alternative method for self-injection for a wide range of therapies.

NIBIB-funded researchers have found a way to model the human neuromuscular junction by growing these synapses in a lab, which could accelerate novel treatments for neuromuscular diseases.

NIH-funded researchers are investigating how to use smartwatches to predict clinical test results, which could potentially serve as an early warning signal for underlying health issues.

Fluorescent “dots” – that is, tiny particles that can emit light – have a multitude of promising biomedical applications, yet making such dots is usually a long and tedious process that uses harsh chemicals. Now, NIBIB-funded researchers are developing a fluorescent dot that is not only easier to make, but uses environmentally friendly materials.

NIBIB-funded researchers are working on an ankle prosthetic that relies on the user’s residual muscles—and the electrical signals that they generate—to help amputees control their posture continuously.

The gut microbiome can impact us in a variety of different ways, from our metabolism to our mood. Now, NIBIB-funded researchers are investigating if a fiber-based gel can restore beneficial microbes in the gut to enhance the efficacy of immune checkpoint inhibitors, a type of cancer immunotherapy treatment.

NIBIB-funded research drives progress in the diagnosis, treatment, and monitoring of middle ear infections.

This study investigates how the nucleocapsid protein, or N protein, of the SARS-CoV-2 virus packages the viral genome.

NIBIB-funded researchers are investigating long-lasting, customizable nanobubbles for ultrasound contrast agents.

The technique used in this preclinical study could aid tissue regeneration following severe accidents, surgical resections, or progressive muscle loss due to age or genetic disease.