Nuclear Medicine

Share:

EmailFacebookLinkedInXWhatsAppShare
This program supports the research and development of technologies and techniques that create images using gamma-ray (SPECT) or positron (PET) emissions from radioactive biological agents that are injected, inhaled, or ingested into the body.

Emphasis

The emphasis is on: simulation and development of new detectors, collimators, and readout methods that enhance the signal quality of detecting isotope emissions; designs of novel camera geometries; and correction methods that compensate for the radiation physics properties to improve the clinical reliability of the image. Of interest are improvements and corrections for interaction events in PET detectors and enhancement to time of flight (TOF) image generation methods (reconstructions algorithms); as well as new collimator and camera designs for SPECT.

Relevance

The emphasized topics are meant to lead toward: improved clinical PET and SPECT cameras or next-generation camera systems; novel simulations, reconstruction algorithms, or artifact corrections for enhancing diagnostic images; and combined camera designs. Investigating the associated dosimetry estimations leads to decreased risk in diagnostic imaging studies in patients.

Additional emphasis

  • coupling of positron emission tomography (PET) and single photon emission computed tomography (SPECT) to CT and/or to MRI (or other modalities)
  • evaluation of new semiconductor detectors and scintillators
  • readout electronics for measuring radiation interactions
  • techniques for improved camera spatial resolution and sensitivity
  • replacing photomultiplier tubes with novel photoconversion techniques 
  • new approaches for improving coincidence measurements for TOF-PET
  • application of secondary emissions (bremsstrahlung, Cherenkov) for imaging
  • novel camera designs applicable to imaging specific organs
  • combining modalities for clinically relevant hybrid systems
  • software algorithms to estimate patient dosimetry

Additional support

  • design of improved spatial and temporal resolution SPECT systems
  • methods of measuring and correcting for patient motion
  • new diagnostics applied to image-guided therapy and theranostics
  • development of imaging molecular agents is supported by the Molecular Imaging program
  • novel evaluation of images is supported by the Image Processing, Visual Perception and Display program
  • clinical application of image-guided therapy and theranostics is supported by the Image-Guided Interventions program

Notice of Special Interest in Radiation Monitoring for Trauma Care

 

    Related News

    May 10, 2024

    Researchers from Mass General Brigham and their collaborators present Tripath: new, deep learning models that can use 3D pathology datasets to make clinical outcome predictions. In collaboration with the University of Washington, the research team imaged curated prostate cancer specimens, using two 3D high-resolution imaging techniques. Tripath performed better than pathologists and outperformed deep learning models that rely on 2D morphology and thin tissue slices. Source: Mass General Brigham

    May 7, 2024

    Malignant primary brain tumors are the leading cause of cancer deaths among children and young adults with few therapeutic options. A preclinical study in Pharmaceutics shows that combining focused ultrasound with microbubbles opened the blood brain barrier to deliver immunotherapy into the brain of a large animal model.

    April 11, 2024

    NIBIB-supported researchers have developed a smart nanoprobe designed to infiltrate prostate tumors and send back a signal using an optical imaging technique known as Raman spectroscopy. The new probe, evaluated in mice, has the potential to determine tumor aggressiveness and could also enable sequential monitoring of tumors during therapy to quickly determine if a treatment strategy is working.

    March 14, 2024

    Researchers at The Pennsylvania State University have developed a new synergistic approach to revascularization that combines a new framework made from granular hydrogels with micropuncture, a surgical technique. Their preclinical method could rapidly grow organized blood vessels in live rats.

    March 7, 2024

    In recognition of International Women’s Day (March 8), we’re featuring Rebecca Richards-Kortum, Ph.D., a longtime bioengineer in academia who has contributed globally to improving women's health.