Skip to main content

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Microfabrication and Microfluidics

Ribbon Icon
Nicole Morgan
Acting Chief, Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS)
Deputy Director, Biomedical Engineering Technology Acceleration (BETA Center)

The Microfabrication and Microfluidics Unit of the BEPS Shared Resource specializes in the following:

  • Design, fabrication, and implementation of microfluidic devices
  • Rapid turnaround of single or multi-layer templates with lateral dimensions down to ~1.5 µm
  • Microfabricated devices made from silicon/glass, PDMS, thermoplastics, and agarose.
  • Structured surface modification, including microcontact printing
  • Developing in vitro platforms that model tissue environments for realistic studies of cellular interactions.  Methods include microfabrication, hydrogel fabrication and characterization, 3D printing, electrospinning, and finite element modeling

Our goal is close collaboration and rapid, iterative design. Although our preferred mode of operation is to disseminate microfabrication technology by having researchers from other laboratories participate actively in device fabrication, we can make templates and devices if desired.

We are located in Building 13 on the NIH campus.

This is an illustration of a template for SU dash 8 on silicon

This is an illustration of a hydrogel with single wells

This is an illustration of a template for chemotaxis studies

The Microfabrication and Microfluidics Unit has the following capabilities on-campus

  • Contact aligner for wafers up to 4” diameter, lateral resolution down to 1.5 µm.
  • Software for photomask design.
  • Spin-coater for rigid and flexible substrates
  • Protocols for fabrication of
    • SU-8 templates with heights from 1µm to 250µm
    • Dry-film resist templates on flexible substrates
    • PDMS and agarose devices
    • Paper microfluidic devices
  • Plasma cleaner (air or oxygen) for activating polymer surfaces
  • Contact angle measurement
  • Extrusion bioprinter with temperature-controlled stage
  • Rheometer for viscoelastic characterization of hydrogels
  • Capability for hot embossing thermoplastics
  • Thermal evaporator for metal (Cr/Au, Al) deposition
  • Expertise in implementing flow control (displacement, electokinetic, and pressure) for microfluidic devices

For silicon/glass devices, tight-tolerance features, or high-yield requirements we can use facilities at NIST.

Saykali BTran ADCornwell JACaldwell MASangsari PRMorgan NYKruhlak MJCappell SDRuiz S
bioRxiv
2024 Jun 14

De Pace RGhosh SRyan VHSohn MJarnik MRezvan Sangsari PMorgan NYDale RKWard MEBonifacino JS
Nat Neurosci
2024 Jun

Ravin RCai TXLi ABriceno NPursley RHGarmendia-Cedillos MPohida TWang HZhuang ZCui JMorgan NYWilliamson NHGilbert MRBasser PJ
Am J Cancer Res
2024

So WYWong CSAzubuike UFPaul CDSangsari PRGordon PBGong HMaity TKLim PYang ZHaryanto CABatchelor EJenkins LMMorgan NYTanner K
bioRxiv
2023 Nov 16

Ravin RCai TXLi ABriceno NPursley RHGarmendia-Cedillos MPohida TWang HZhuang ZCui JMorgan NYWilliamson NHGilbert MRBasser PJ
bioRxiv
2023 Jan 20

Sedlack AJHPenjweini RLink KABrown AKim JPark SJChung JHMorgan NYKnutson JR
Int J Mol Sci
2022 Oct 20

Amarasekara HOshaben KMJeans KBRezvan Sangsari PMorgan NYO'Farrell BAppella DH
Biopolymers
2022 Mar



Healy MWDolitsky SNVillancio-Wolter MRaghavan MTillman ARMorgan NYDeCherney AHPark SWolff EF
Micromachines (Basel)
2021 Mar 04

Han XSu YWhite HO'Neill KMMorgan NYChristensen RPotarazu DVishwasrao HDXu SSun YHuang SYMoyle MWDai QPommier YGiniger EAlbrecht DRProbst RShroff H
Lab Chip
2021 Apr 20

DiStefano TJChen HYPanebianco CKaya KDBrooks MJGieser LMorgan NYPohida TSwaroop A
Stem Cell Reports
2021 Jan 12

Bashant KRAponte AMRandazzo DRezvan Sangsari PWood AJBibby JAWest EEVassallo AManna ZGPlayford MPJordan NHasni SGucek MKemper CConway Morris AMorgan NYToepfner NGuck JMehta NNChilvers ERSummers CKaplan MJ
Ann Rheum Dis
2021 Feb

Ravin RMorgan NYBlank PSRavin NGuerrero-Cazares HQuinones-Hinojosa AZimmerberg J
Biophys J
2019 Oct 01

Paul CDBishop KDevine APaine ELStaunton JRThomas SMThomas JRDoyle ADMiller Jenkins LMMorgan NYSood RTanner K
Cell Syst
2019 Aug 28

Wulftange WJRose MAGarmendia-Cedillos Mda Silva DPoprawski JESrinivasachar DSullivan TLim LBliskovsky VVHall MDPohida TJRobey RWMorgan NYGottesman MM
J Cell Physiol
2019 Nov

LeBrun TSchuck PWei RYoon JSDong XMorgan NYFagan JZhao H
PLoS One
2018

DiStefano TChen HYPanebianco CKaya KDBrooks MJGieser LMorgan NYPohida TSwaroop A
Stem Cell Reports
2018 Jan 09

Petrie Aronin CEZhao YMYoon JSMorgan NYPrüstel TGermain RNMeier-Schellersheim M
Immunity
2017 Nov 21

Clatworthy MRAronin CEMathews RJMorgan NYSmith KGGermain RN
Nat Med
2014 Dec

Miao HChen LBennett EEAdamo NMGomella AADeLuca AMPatel AMorgan NYWen H
Proc Natl Acad Sci U S A
2013 Nov 26

Wen HGomella AAPatel ALynch SKMorgan NYAnderson SABennett EEXiao XLiu CWolfe DE
Nat Commun
2013

Jaeger AADas CKMorgan NYPursley RHMcQueen PGHall MDPohida TJGottesman MM
Biomaterials
2013 Nov


Chikkaveeraiah BVBhirde AAMorgan NYEden HSChen X
ACS Nano
2012 Aug 28

Lynch SKPai VAuxier JStein AFBennett EEKemble CKXiao XLee WKMorgan NYWen HH
Appl Opt
2011 Aug 01

Zubair ABurbelo PDVincent LGIadarola MJSmith PDMorgan NY
Biomed Microdevices
2011 Dec

Kakareka JWMcCann TEKosaka NMitsunaga MMorgan NYPohida TJChoyke PLKobayashi H
Mol Imaging Biol
2011 Oct

Morgan NYEnglish SChen WChernomordik VRusso ASmith PDGandjbakhche A
Acad Radiol
2005 Mar